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ABSTRACT

Presented in this report are finite-difference heat-transfer equa-
tions for transient, radial heat flow in spheres and cylinders and for
transient, one-dimensionalheatflow in flat plates. The derived equations
apply to structures before, during, and after surface recession for all
three basic structure configurations and for several generic material
skin combinations.

For each skin configuration, the accuracy of the finite-difference
procedure, compared with exact analytical methods, depends on opti-
mum selection of the calculation time increment and the incremental
distance between temperature nodes in relation to the material thermal"
properties and on the closeness of the approximate temperature gradi-
ents to the true gradients. In addition to these common criteria, the
magnitude of the surface recession rate in relation to the calculation
time increment and temperature nodal point distance affects the
accuracy of the finite-difference temperature results. When compared
with exact solutions applicable to semi-infinite flat plates undergoing
surface recession, the calculated finite-difference temperature gradi-
ents during recess,.n are very accurate when the amount of material
removed during "i calculation time increment is equal to or less than
one fourth of the selected distance increment between temperature
nodes.

The cylindrical and spherical equations are presented for centrip-
etal heat flow and surface recession. Two simple methods of converting
the centripetal equations to the centrifugal form for applications to
structures such as blast tubes, rocket motor combustion chambers,

!* and nozzles are discussed. These two methods involve making a minor
number of sign changes in the centripetal heat-flow equations.

Attractive features of the ablation-conduction method described in
this report are the negligible increase in required computer time over
a nonreceding case when all other parameters are identical. Secondly,
the nonshifting temperature grid prevents confusion in interpreting
computer results and readily lends itself to automatic plotting techniques.
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SYMBOLS

A - Area.

0 - Angle in radians.
i b - olid angle in steradians.

L 13 DJimensionless moduluskt .tt
R - Radius of cylindrical or spherical section.

rn - Distance from outer surface of cylindrical or spherical
section to temperature point n (includes thickness of ablation
into T layer, a).

At - Time increment for computation.

Temperature.

k - Thermal conductivity of material.

c -Specific heat of material.

p - Density of mate,:ial.

T - Incremental thickness for each material.

qnet - Net heat flux at boundary.

a - Summation of ablation into any one T (0 < a _5 T), E(AAt).

L - Length of cylinder (unity).

a - Ablation or recession rate.

Z - R ETZ.

B Symbol notation defined after each use.

6 -Material thickness.

Subscripts and Superscripts

a - Material "A."

b - Material "B."

c - Material "C."

bs - Backside or internal surface.

o - External surface.
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i -Internal surfac.

-Conditions existing after the lapse of one At.

nl - Nodal point.;Ini - Melt condition.

viii



Section 1. INTRODUCTION

With the continuing use of rei'able ablating reinforced plastics and
subliming materials for efficient, economical, thermal protection of
missile airframes and components, an accurate simple solution. to
problems of transient heat flow in solids experiencing a variable sur-
face recession rate at one surface is required. This solution is not
only necessary for flat plates but also for cylinders and spheres.
General analytical solutions for structures undergoing surface reces-
sion are not available, and exact solutions are known only for special

, I flat-plate cases.

The analysis of small hemispherically tipped vehicles can be more
accurately calculated by a spherical program than z flat plate. Often
many small semicylindrical leading edges, blast tubes, motor cases,
and nozzles can better be assessed by a cylindrical procedure than by
a flat-plate procedure.

I? A large majority of the materials used for th rmal protection of
supersonic missiles possess a very low thermal diffusivity. As a
result one-dimensional heat flow in flat plates and radial heat flow in
cylinders and spheres are sufficiently accurate even though the heat
input usually varies along the exposed surface.

A numcr'cal finite-difference method for heat flow before, during,

and after surface recession on flat plates, cylinders, and spheres is
described in this report. The equations derived for cylinders and
spheres are for centripetal surface recession; however, two simple
methods of using the same equations for centrifugal surface recession
are discussed.

A brief comparison of calculated temperature distributions with
exact results is discussed for snecial, ablating flat-plate cases. In
addition to the criteria affecting the accuracy of finite-difference
results for a piate with no recession, the accuracy of the numerical
calculations for surface recession depends quite heavily on the judiciousr selection of the incremental node thickness and calculation time incre-
ment in terms of the actual surface recession rate.

The advantages of the ablation-conduction method presented in this
report are the simplicity of its formulation, the versatility of the
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boundary conditions (variable recession rate, numerous material com-
binations, and variable thermal properties),* and the short computer
time required. For the same structural arrangement and identical
sele tions of variables such as node thickness and calculation time
incr,'ment, a recession computation requires a negligible increase in
conrputer time over the nonrecession case.

'Temperature dependent approximations for specific heat and

thermal conductivity.
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Section II. HEAT CONDUCTION WITHOUT SURFACE RECESSION

11. Transient, One. Dimensional Heat Transfer for Flat Plates

One-dimensional, flat-plate heat transfer in a homogeneous
material may be determined by solving heat balance equations at the
exposed surface, unexposed surface, interior nodes,, and interfaces.
The forward finite-difference method was used to s'olve the heat balance
equations. It was assumed that the incremental thickness (T) can be
selected small enough to give accurate temperature gradients between
adjacent nodes and that the incremental time (At) is small enough to
neglect any effect on regions more than one r from the node in ques-
tion. The stability criteria for the forward finite difference equations
can be found in Report No. RS-TR-65-1.'

a. Thick Material

(1) Exterior Surface. From Figure 1 the heat balance
at t1 exposed surface is

qnet o - qcond qstor0d
1 --z 1 (1)

where

qnet °  = net heat received per unit area

qcond = ka A (Ti-T 2 )
Ta

Ta (T 1 - Tl)
q a Aqstored PaCa" At

- 1

The area, A, is uniform for one-dimensional, flat-plate heat transfer.
Rewriting Equation (1) we have

! (Ti-T 2): Paca 

1U. S. Army Missile Command, Redstone Arsenal, Alabama,
SOLUTION OF TRANSIENT HEAT TRANSFER PROBLEMS FOR FLAT
PLATES, CYLINDERS, AND SPHERES BY FINITE-DIFFERENCE
METHODS by W. G. Burleson and R. Eppes, Jr., 15 March 1965,
Report No. RS-TR-65-1 (Unclassified Report) AD 461 662.
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T, T2 Tn, T I T+ 1Ts Tb

II

2 *a

Figure 1.

or
, 2 qneto 4t _

T, T, + Zp a (T,- TI) + (a c3)
Pa Ca Ta

where

ka At
PaPT- -

(2) Interior Node. The energy balance at any interior
point n of a homogeneous wall (Figure 1) may be written

qcond + qcond = qstored

n-1-n n+r- n n (4)

or

k a + k a ( T ' - T n
T ka (Tn..i -Tn)+Ta (Tn+i -Tn) Pa ca Ta t~ n (5)T a At " (5

Solving for T n with

k 4i~P 2 aA
3a Pa Ca Ta

T: Tn(1- 2Pa) + Pa (Tn-i + Tn+i) (6)

(3) Backside Surface. The energy balance at the backside
surface (Figure 1), Tbs, may be written as

qcond - qneti = qstored
bs-i-bs bs (7)

4



or

ka Ta (Ti35 - Tbs)
S(Tbs- - Tbs) - qneti  Pa ca T At (8)

Ta

Rearrange and solve for TLS with

ka At
Pa ca Taz

, z~ At(9
Tbs = Tbs + 2a (Tbs-1 - Tbs) 2 tneti- - et~Pa Ca T a

b. Thick- Thick Material

At the interface between material "All and "B" (Tn,

Figure 2), the energy balance is

qcond + qcond qstored

n-i-n n+1-n n

or

kkb

Ta (Tn-1 - Tn) + (Tn+i - Tn)

cab) (Tn -Tn)f(Pa ca'-"+ Pb Cbt (11)

Material Material
A B

I n-Il n11Tn +1 i+
I I J

Figure 2.

5



I/

Rearrange and solve for Tn

2 ka At
Tn Tn +(Tn-iiTn) Ta(

a (Pa Ca Ta + Pb Cb Tb)

2 kC At

C. Thin-Thick Material

t tr lAt the exposed surface (Figure 3) the energy balance for

the thermally thin-thermally thick interface is

qnet o + qcond = qstored
+(13)

or

q +kb (T,-T) Paca a+P b) (T T1) (14)
b T t

Rearrange and solve for TI

, qnetoAt kb At (T- T)

(Pa ca Ta + Pb Cb (Pa Ca Ta + Pb Cb (15)

Material Material
A B

Thin Skin

Ta, T

b2

Figure 3.



d. Thick-Thin Material

The energy balance at the backside surface (Figure 4),
Tbs, may be written as

qcond - qneti qstored

bs- 1- bs bs 16o

o r

ba(Tbs-- Tbs) qnet i = a a + Pb Cb T(16

Ta  A
(17)

Rearrange and solve f or Tbs

, k a At (Tbs_- Tbs )
Tbs =Tbs + T

Ta (Pa ca' T Pb Cb T b

qnet, A t 
( 8

(a CaT ' Pb Cb T b

e. Thick- Thin- Thick Material

At the interface between material "A"' and "C" (T n ,
Figure 5), the energy balance for the thermally thin material "B" is

qcond + qcond = qstored

n- l-n n+1-,-n n (19)

or

kc ( Taa(Tn-- Tn)(+ + (Tn+l Tn) T) T

(Tb..i T - (nt =T Psa

Tb 5 + ka At (Tbn -Tbs)(20
Ta(Pa cai + Pb AbTb

A t" At(18)7

(Pa aT +~b c Tb

e. Tick-hinThic Matria



Material Material
A B

Thin Skin

Tbs-I I Tbs

Ii

Figure 4

Material

Thin Skin

Material Material
A C

I I
Tn-l T \ Tn I Tn+i

L I

T-- a ---- b TC -

Figure 5

8



FV9 .r I 0--! " -I - I 
__________

. .. ....

Lerag6adslefrT
4 ka t (Tn, T/

Rcrrng and solve fo Tn )(1

C>n (Pt CTa, T +Tn)b P C

S2, Transient, Radial Heat Transfer for Cylinders

a.Thick Mate rial

haeasshown in Eto Figure Suc. From the Cne energya balancecyida at the peripheral

qin Al qout Az qstored A43
I1-2 1 (22)

where

ka ITa\
qout (T - T2) A (R--jL

1-2 a Ta (r1  T) .a\

qstored =Pa -aT 2 At A A3 (R-4 OL

or (O qka a -

RO neto (R - eLLp (TI Z

T a Ta ( T - T 1)
(R- 4 OLPa CaI At (23)

Let

ka At

PaPa ca Ta2



" t qnstO

~Figure 6.

rearrange; and solve for TI",

R T a1 iqneto R At -

i€ ::T, : T,+ (R )PTa ... ) Z~a  -Ta (T - T,)' (24)

1 '

(2) Interior Node. The energy balance at any interior

point n of a homogeneous wall (Figure 6) may be written

qcond Al + qcond A2_ qstored A3

n-il-n n+i -n n (25)

~where

Al (R -T n + ? 8L

,;,iAz (R T n -2a OL

' A3 (R -IT OL

_ - . o r

T a ) Ta(T~

OL + Tn- n 16)

0 OL (R E n)Pa ca Ta At(6

10



Let

ka At
Pa C T 2

Pa a a

rearrange; and solve for Tn

Tn =Tn+Pk R - T)(Tn- Tn)

+ Pa( R R~ -E (Tn+i -Tn)' (27)

(3) Backside Surface. The energy balance at the back-

side surface (Figure 6), Tbs, may be written as

qcond A1 - qneti A2 = qstored A 3

bs-i-.bs bs (28)

where

ka Ts ~qcond A1  = --a (Tb - (R bs + OL

bs-"-bs

qnet- A2  = qnet i (R-,bs ) L

Ta (Tbs - Tbs) R + eL
qstored A 3  Pa CaT Atbs

bs

o r

ksa T bs- Tbs) " qneti (R Tb

OL- (R ITs+ (Tb 5.. 1- O nei

T a s -Tbs /
=0LPaCa b + b- T (29)

Let

ka At
aP A Ca T a

11



z77,

rearrange; and solve for Tbs

R-Tb 2aT+R -
(bs +30

q 2At R -Tbs (30)
qneti Pa Ca a _W + .

b Ta

b. Thick-Thick Material

At the interface between material "All and ttBIt (Tn,

Figure 7), the energy balance is

qcond A1 + qcond A2  qstored A3

n-i-n n+l-n n (31)

whe re

qcondA1 - Tn- Tn( n

n-i-n

qcond Az kb (Tn+ - Tn ) (R -FTn - OL

n+i- n

Ta Ta
; i qstored A3 [ - n + Pa ca

K(R n ) AtcaTb b]L Pb Cb

or
ka  kb T b  _

OL- (R Tn Tn- IT) + OL-k (R -E Tn n)I.,iTn)

a

a 2a

+(R Q~n -b)Pb cb~j A (32)
A

12
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rrn

T T_

Figure 7.

Solving for T n

2 ,Z ka  At (R n + -" Tn- Tn)

Tn = Tn + T+T T b

Ta R E n +- 4- Pa Ca Ta +( R E n 4)Pb c b

2 kb At (R -ITn - T) ' Tn+i - Tn

STbR + Pa Ca Ta +(R -Tn - Pb Cb Tbj

c. Thin-Thick Material

At the exposed surface (Figure 8) the energy balance for
the thermally thin-thermally thick interface is

1L

qneto Al+ qcond Az = qstored A3
2-1 1 (34)

where

r",neq Al qneto R 0L

qcond Az -- z -T) (R T a  2) OL

13
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Material

Motol

q neto .. .-- ."

Figure 8.

cst r dA 3 4=PacaT a(R 2T)

Tb T Tb) (T Ti) 0L
+ PbbkR -T Ta - At OL

or

OL R qnet + L T( - Ta - b (T2 -TI)

O8Lfa Ca Ta. (R Ta)

+ Pb c.-T (R - Ta - -4 At (35)

Rearrange and solve for T1

qnet, At R
a CaTT a (R - -2)+ PbCb T - Ta) -

kb At (R - Ta. T ) (Tz -TI)

+ P C T ~ ( ' - ) b b T ( T ) (36)
1b4 a a a (R -- 2 + Pb rb R - Ta

14



d. Thick-Thin Material

The energy balance at the backside surface (Figure 9),

Tbs may be written as

q An-tq A2  q A
~cond A1 - i stored A

bs-i-bs bs (37)

where

qcond Al T (Tbs-i - Tbs) (R -ETbs + )OL
bs-l -bs~T

neti jA - net ( Tbs- b

Cstored I3p a caT (2 -4s
bs

+ Pb cb Tb (R - Tbs - (T~sTb) eL

'E b 2a

,Mat~rlo

Fiur 9.-

R1



i...

or

jOL h (R -ITbs + () - Tbs) OL qnetj (R *~Tbs Tb)

-OL Pa Ca (R -ETbs +

+ Pb Cb Tb (R - T us - At

(38)

Rearrange and solve for Tbs

- bs+ aAt (R JTb + Ta) (Tbs-.. - Tbs)Tbs -Tbs + Ta[ a .CaTTh
ab TaPa (:a ( TS 4a +Pb cb Tb(RTbs--)

qneti At (R -FTbs - Tb)
"Pa Ca;+ R T'Tbs+ ) + Pb Cb Th(R Ebs- Tb

0. Thick-Thin-Thick Material

At the interface between material "A" and "C" (T n ,
Figure 10), the energy balan ;e for the thermally thin material "B" is

qcond A l qcond A2 = qstored A3

n-i-n n+i-n n (40)

whe re

qcond Al I (Tn..i -ET a\ OL
n-i-n Ta - Tn Tn +- - L

qcond A2  T- (Tn+i - Tn)(R "n - Tb - OL

n+1-* n

qstored A3 Pa Ca T ( Zn + " + Pb cb Tb R -ET n-  )

n

Pc Cc (R -ZTn -Tb - T ) 0L

2 4 I t

16



Materi-

IT

Tn 1~

Figure 10.

or

OLa (R Tsin +i)Ti. n- Tn) + OLL (R -2r:TbT(T --

-0LPaa~**(R~Tn ~)P Tb(R..(TTb )

TT

T ~ T (T. -bT (TTn-

~ a~ i~~. , A tb ?(R - ,, -T' n- (RT T T
2(42)

Tn T (RCb R - n T , ) +PC C TC(R -,'r 17



* 3. Transient, Radial Heat Transfer for Spheres

a. Thick Material

(1) External Surface. Consider a spherical segment heated

as shown in Figure 11. From the energy balance at the peripheral surface

qnet A1 - qcond A2 qstored A3
0-21 (43)

whe re

net = qnet ° R

1 -2 L

qstored A3 =Pa caT (T T 48R~) + ]i 4

21aT a

,R z qnetI - T - + -(Ti - Ta)r T\3 a] Ta T-T

qPa Ca3T- At (44)

~(The average area terms are derived in detail in Report No. RS- TR-65- 1. )z

oo

net 2 12 net

Figure 1 1.

3 Burleson and Eppes, loc. cit.

18



Let

ka At
Pa P Ca Ta_

rearrange; and solve for TI

qneto R At
T, I + Ta~z Taz T

" +'8.| Pa CaT'-

Ta '+ 1T a] T -1? 
45)

(a R -Ta)2 +Taz

(2) Interior Node. The energy balance at any interior
point n of a homogeneous wall (Figure 11) may be written

qcond A,.+ qcond Az qstored A3
n- i--n n+1-n n (46)

where
Ta-) TaZ

qcod AI = -a n-i- Tn) [R -T n + + q

n-I-n a

: i n+li-" n T T

qstored A3 Pa ca at (R n) + 1kj
:i n

ror

qk[(R . n+ 2 + a2 a (T T

k(Tn+ - Tn) (7

[ T)Z Ta' Pa Ca Ta (t

19



Let

ka At
Pa Ca Ta'

rearrange; and solve for Tn

12

ST'n Tn+ Pa "Z-Tn+ )+- (Tni- Tn)

-
(R -En + i--2

+ Pa[R 2"+- (Tn+i - Tn) (48)
(R -E T'  + -- (

"(3) Backside Surface. The energy balance at the backside
surface (Figure 11), Tbs, may be written as

qcon1 d( Al - qncti Az - qstored A 3

bs-i-b bs (49)

where

qcond Al a (Tbsl - Tbs) R -I'rbs+-_ + 1

bs- -bs s

neti net i [ Tbs)2

Ta (Tbs Tbs)b + Ta2+" Taz

qstored A3  Pa Ca -t [ Tbs 4) 48

bs

or

Taa T aZT (b-Tsq) t(R I:bs 4 2 4I-- ,j L (Tbs-i - Tbs) - qndt [ (R -ETbs) z

= R I:Tbs + TaZ Ta (T~s - Tbs) (50)

Let

ka At
P Pa Ca Ta2

20



rearrange; and solve for TL

-a - a
T = Tbs + 2Pa [(R -ETbs i2) ( 12 Tbs-i -Tbs)

-Tbs + + T

_ _ 1_t R -:Tbs) 48

b. Thick- Thick Mate rial

At the interface between material "All and "B" (Tn,
Figure 12), the energy balance is

qcond A, + qcond Az = qstored A3

n-i--n n+I-n n (52)

where

ka /a2 aqo A T n - i T) [(R Tn + + ]
cond Ta 1

n-i- n

condA 2  Tb (Tn+l - Tn (R Tn) -  + 12

rn+1- n

qstored A3 = 48 na a 2

n z[R T+~ ++2]~ aT n Tn4 48

or [(R 8) R1 - -n})

[(R 2: a 71i' -?

o 1 R a,° 4 ] T 4  48( Pb Cb2

(53)

21



TI"

11 __ _ ___ ____ _____ ____ _____ ____

* r

TI ITKt",

Figure 12.

Rearrange and solve for Tn

+a\ 'r 2a 2 (nl

ka At !(R J Ta) + *-i(a. ~

n n+Ta I(R Tn , T 2 Ta Pa ca T + (R 1,n - 7) + TbjJ Pb cb T

T I ' I

Tb (R Tn 4) ~PacaT + J( ET nb. 4 78 Pb Cb 2

(54)

I c. Thin-Thick Material

At the exposed surface (Figure 13) the energy balance
for the thermally thin-thermally thick interface (TI) is

q net o At + qcond A2  q stored A3

2 -1 1 (55)



Matoril
ilThin Skin Material B

R

Figure 13.

where

2k

qneto Al = qnet o0 R~d

qcond A? T21-(T) [(R - T T))

qstored A3 = Pa Ca T a [ + 1

1

Tb Lb)Z + 1) T .- T1
+ Pb CbTJ(R Ta- +4  " At 4)

or,-rkb Tb\2  bzl1 T)
k Tb 2

"O 2  cinet + 4) 1 R a - + "T,

= Pa Ca Ta [(R- 2 +

T b Tb  T l -T l
+ Pb b[(R - T a + "8 T T (56)

i

t 23i



Rearrange and solve for T1

T,(+7)

kb Cb'., , - Rz - Ta - -

.1 Ta [(R 1-2- 4"Vm 2  
7 a"aI' ) +J~ b b L!l )' -

d. Thick-Thin Material

The energy balance at the backside surface (Figure 14),
Tbs, hay be written as

qcond Al - qneti A? = qstored A3

bs-i--bs bs (58)

where

qcond A = (Tbs- - Tbs Tbs + 2 T 2

bs-1---bs a 2 +2

qneti A2  = qneti (R- Tbs Tb)z *

Ta Ta 2'Th T..2
qstored A3 = Pa Ca (R J Tbs + + a

bs 14/

Tb 2 Tb ~l (T b - Tbs)
+Pb cb T b [kR E2Tbs - T) + -2]. 1 t

Material
A

* I Moerlotl

...hn Skin

I Il I /

E Tb

Figure 14.
24



ror

IZ

ka T a!a
= 6-Pa ca? + I( ) ) +)-

T a Tbl (T bst -Tbsb

Tb bb, T z K -T)S

+ Pb Cb Tb I(R - tb- +

(59)

Rearrange and solve for tw.

Tcon aI Rd A- + so + T a - TbS) r

E T- 2 --12

T~ ac Ij(F -E~bs 71 Pb Cb TI1 -YTb

qI, * t At (R o -E b -b)

FI.

T.,. ., - -
Pa a j K~ TV18 (60)

At heintrfcebetween "A'" and "CG''.(T,, Figure 15),

the energy balance for the thermally thin material "B'' is

q con A, + q n Az ; toe A3

n-i-n ni-n n (61)

, he re

WOW- k,-

i J. . . .- -. ..R . . , ,



Material B
Thin Sk

Figure 15.

or

IR) + J - ITn..1 Pa Ta R + 4 #

Matria Culq~ / I /. I

" Pb Cb Tb R -Tn - .1)+" -2 + PC Cc-Y-R ZT

-T"b-T) + (t4

-4 c -



Rearrange and solve for In'

E ll, 
'l '"i

48 Pb I), l , ,<~____
....

~~ 
E "' 

-
48 

-. ,},

(63)

7k4tI
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Section III. HEAT CONDUCTION DURING ABLATION

p

To calculate the heat transfer in a material when the exposed
surface of the material is heated, an energy balance must be performed.
For this analysis the energy is considered to be either radiated away
from the exposed surface, conducted into the cooler interior of the
structure, or stored in the material near the exposed surface. If
sufficient energy is stored at the surface, the surface temperature will
eventually reach a critical value. This value is usually known as an
ablating, melting, or subliming temperature (Tn). In this report it
is assumed that the ablating temperature Tm is known or calculable,
and this temperature remains constant while ablation is in process.
Another basic parameter required once the exposed surface has reached
the ablation temperature, Tm, is the recession rate (ablation rate) or
the rate of material removal. It is assumed that the ablation rate (A)
is known or can be calculated for any given increment of time, but may
change as a function of time.

It is also assumed that once the exposed surface reaches the melt
temperature (Tn), the recession rate governs the amount of material
removed. The material properties of specific heat (C) and thermal
conductivity (k) may all be a function of temperature." The pyrolysis
of the material leaving the heated surface of the slab has been left out
intentionally because of the complexity of the problem. However, this
parameter can be included in the heat balance, if desired.

Figure 16 shows the temperature grid arrangement for a slab
undergoing surface recession. Nodal points TZ through Tn do not
change or shift positions while ablation is occurring between the orig-
inal nodal points T 1 and Tz. When the ablation front or receding front
reaches or passes Tz, the TZ nodal point temperature assumes the
value of Tm, and T3 is calculated in the same manner as was T? when
the receding surface was between nodal points T 1 and Tz. Once the
ablation front reaches a nodal point, the ablation distance "a" is reduced
by the value of Ta (0:5 a : Ta), and the process starts over again.

Let us first assume that T1 and T, take on a constant value Tm
for all times during ablation. The primed or future values for all
T's (T through T' in Figure 16) can be obtained by ordinary forward
finite-difference methods since each oi these nodal points is a full Ta

Temperature dependent approximations for specific heat and

thermal conductivity.
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from the two adjacent nodal points. Thus only the future temperature
at one nodal point (T.) is not defined. Examination of the geometry
for the ablation case shown in Figure 16 in light of the pure conduction
condition described in Figure 1 reveals that two basic conditions must
be considered for the ablation-conduction case. One case is for

Ta Ta
Oa 5 ,and the other is for--< a_ 5Ta.

The energy balance for the T~z nodal point using forward finite-
difference approximations for a slab is as follows when "a" is equal

to or less than 2 a

(Inet o  T I I TM T3 T4  Tn- Il TIn

~~netr -------~J_____ ra

Note: TI : T : Tm during ablation.

Figure 16.

Recession condition 0:5 a T-

qinA - qout A -qstored A
1-2 Z - 3 z (64)

where A is unit area, or

ka ( ka ( (Tz -TJ
Tm - TZ + T 3 T PaCaa (65)TaaaTa ' 1Ca At
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Let

Pa k a At

Pa CTa

rearrange; and solve for T'

I'T' (z.Ta  a j( T'm -Tz)+Pa (T3-Tz) (66)

Ta

This equation is valid for 0 5 a .L . When "a" = 0, Equation (66)

reduces to an interior node equation haoing the form of Equation (6)
Ta

for the pure conduction condition with Tm= T I. When "a" T

Equation (66) is unstable for P > 1/3.

Ta
For the case where T < a _ Ta, the reduced storage associated

with nodal point 2 must be considered. The energy balance for the
T2 nodal point using forward finite differences becomes

qin A - qout A = qstored A

I - 2 2 - 3 2 (67)

where A is unit area, or

ka )a

Ta-a) (T /z Ta(T T)

Pa cak - a) (TT - ). (68)

Let

k a At
Pa - Pa Ca Ta 2

rearrange; and solve for T2

T 2 (Tmi - T 2) Ta / T2 )Ta y a 7  T3 - (69)
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Equation (69) is discontinuous or unstable at "a" Ta, regardless
of the value of [5. This instability would bring about problems each
time "a"-.Ta and nodal points are removed.

To eliminate the stability problems associated with Equations (66)
and (69), an investigation was made of a backward finite-difference
approximation for T. when ablation is in process. The backward
finite-difference approximation is accomplished by priming all tem-
perature values to the left of the equal sign in Equations (65) and (68).

This is possible since the surface temperature, Tm, is known, and
all other temperatures beyond T? are easily obtained by standard
forward-difference techniques. Two resulting equations in terms of

Tz are obtained in relation to the position of the receding surface.
Ta

Recession condition 0 __ a<T-

ka m TIz' + - a (T; - T z'
a-T

(T-a T- T1'z 0 <a <-- (70)

Pa CaTa ( At -0 a T

or letting

ka At

-Pa Pa ca Ta 2

and solving for T2Par+aa2 T ( Ta-a)__.
__ a Ta TaP a Tm + P5 a( T, + T, -r T _ -  (1

TT = a aa 05a5 (71)

Pa Pa .Ta Ta
T

Recession condition T < a _S Ta
2

Tk- a (T' T ' )
(Ta a) (c Ta

. Pa ca a Ta

(72)

I



or letting

ka t
P Pa Ca TaZ

and solving for T2

a Tm +a(Ta Ta+ 2 T

T ( a = T. ) T - a

Pa +  (a a + a

Ta

< a S T (73)
T< a'

It can readily be seen that Equations (71) and (73) are continuous

for all values of "a" (0 s a _< Ta) and are a marked improvement over
Equations (66) and (69).

Amid finite-difference .approximation was also investigated for
finding TZ . This mid-difference method is a better approximation to
the exact solution than the backward finite-difference approach. How-
ever, the additional complexity of the equations and computer storage
requirements were considered unwarranted for the additional accuracy
gained.

Another ablation-. conduction pproach that has been used success-
fully is the "shift" method shown in Figure 17. An interpolation
routine is used with known temperatures T 1 , T 2, T3 , and T 4 to get
Tj and Tj located at even increments of Ta from T1. The general
forward finite-difference interior equation is used to get Tj, i. e.,
TI, Tj, and Tj are used to get TZ. Nodal points T3 through Tn are
calculated using the ordinary forward finite-differen,.e equations and
original temperature node locations. With the prime temperatures
known (Tj, Tj, T3), it is possible to use a three-point intc rpolation
routine to find T2 located at a distance of one Ta in front of nodal point
T3 and Ta - a distance from the receding surface. This "shift"
method can be used accurately until the receding surface becomes
closer than two Ta's from the unheated surface. At this time other
special equations must be utilized.
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After consideration of the advantages and disadvantages of the
three approaches discussed, it was decided to pursue the backward
finite-difference method in deriving the energy balance equations (TZ)
during ablation for one-dimensional flat plates and radial conduction
in cylinders and spheres.

The finite-difference equations presented in this report for finding
the temperature profile near the receding surface are limited to the
condition of 0 :5 a 5 Ta. However, as the receding front passes succes-
sive originally selected temperature nodes, the equations as derived
are applicable if appropriate temperature subscripts are used. For
example, when the receding front is between the original location of
Tz and T 3 (Figure 16) on a semi-infinite slab, either Equation (76) or
(79) is used to find T3' by increasing all temperature subscripts by
one.

1. Flat Plote

The proLedure for calculating heat flow during surface reces-
sion is described for all expected material combinations with the
general thick equations being a repeat of Equations (70) through (74).

a. General Thick with 6 a > Ta (Figure 16)

Ta(1) 0 < a <5 Ta The energy balance for T? is

qin - qout = qstored (74)

1-2 2-.. 3 2

or
" ka It (T2 T 2)

£ T~m  T + - (T3' z a aT
Ta a) Ta \tT2hPacaTa

Letting

ka At
Pa - Pa Ca Ta2

and solving for Tz,

14



( Ta- a) (Ta a)
Pa Tm + PaTa T ' + T, (Ta )(6TTa a (76)

/ + TPa+ aj TaT

Ta
(2) a < a Ta. The energy balance for T2 is

-2

i'!.qin "qout = qstored

1-Z 2--3 2 (77)

or

;a TT T + a - T(T) Pa a t "
Ta - a T, Ta / t

(78)

Letting

ka At
Pa P Ca TaZ

and solving for Tz,

'Ta3T

Pa Tm+ (a " ) T3 + T ( Ta )7

T2 Ta T T 2  Taz

Ta-a (_"aa a) (T a - a)

It should be noted in Equation (79) that, as "a" approaches Ta, Tz-
takes on the value of Tm. This is true under actual conditions since
the nodal point T1 is moving, and all the other nodal points are fixed.
As the ablation front reaches the original interior nodal points, these
nodes take on a temperature value of Tm.

As long as the remaining wall thickness of the material undergoing
recession is equal to one or more than one T, the interior and interface
equations presented in Section II are used to solve the heat balances
throughout the structure away from the receding surfaces.

I-
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b. Special Thick with 6 a : Ta (Receding Surface : Distance
Ta from Backside, Figure 18)

When the receding surface is less than one incremental
Ta from another material surface or the backside of material "A,"
special consideration must be made for all boundaries normally
experienced.

!+80+

I Tm

L.-

Figure 18.

(1) 0_ a The energy balance for Tz is

qcond qneti qstor,,d
1--2 2 (80)

or

(ka (m-2 Ie~P Ta (T,' - T) (1

Letting

ka At

-a Pa ca Ta2

and solving for Tz,

T +(Taa Pa ca ( A Taa) (82)
Tz : .. T a  -a (82)

ZPa +

361A 6-- a



(2) -T- < a :5 Ta. The energy balance for TZ is

q cond qneti q stored
1 - Z (8 3 )

or

ka (TmT- Ta (84)
(Ta- a) (T m  T?) qncti Pa Ca ) At

Letting

ka At
Pa ca Ta 2

and solving for T 2

Ta- a2 qneti A (T -

Za Tm + Ta T 2 - Pa Ca Ta a(85)

TTa + a) 1
\ Ta

c. Special Thick-Thin with 6a _. Ta (Figure 19)

80

!I Tm T? j_. qnot i

Figure 19.
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Ta
(1) 0 < a <- The energy balance for Tz is

qcond -qntiz qstored (86)
1 -2 2

or
ka Tp"a

Ta-a) (Tm -TZ) (Pa

SPb cb Tb (i t T J(87)

Solving for T ,

k /TIn "" + ' t I 'r. bT a a.' ; pb Pb bj T.,1 ' a.- - b r~
T, k t - a- "4Ti

P- Pb'b bI (88)

() "- < a s Ta. The energy balance is

qcond - qnet i qstored (89)
-2 2

or

T ka a T T ,) - ncti - a ('Pa- a

+ Pb Cb Tb (T T2 ) ((O)

Solving for T 2

-I n, k, at /T a - a At (itar a -- a

kaAt T a -

Ta P Ca Pbtbrb)



d. Special TIhic-k-Trhihk With ba < Ta (F.igure 20)

iS

Ho
Material Material

A

I Tm TZT 3 1
L

I

Figure 20.

Ta
(1) 0 a i -a The energy balance is

qcn qcond qtrd(2
1 -2 3 - 2 (2

or

(T -n T') + (T 3- z
/Ta - a)

mT

( Ta Tb\ (LTz T) (3
-\a -a + Pb Cb -2 At (3

Rearranging and solving for Tz j

Tm -1a ca T Cb, T b1Pa Ca, -i- T b bTa Pb Ib To

ka at kb At ( )Ta-a
Ta Ia -a T Pba Cb 71J TI) 1P., Ca 7 Pb 11)ipT,

(94)
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Ta
(2) - - < a : Ta. The energy balance is

qcond + qcord qstored (95)

1"-2 3-2 z

or

Ta m - T + b T3 - T Pa ca a-a)

+ Pb cbTb (z )(96)

Solving for TZ,

'I, kA kb At (T.

T;: ~ ~ ~ ~ T~ Tar~h? )P~ bjPa Cari a).bb~ 'rb],
k_. ,, kb .At _(r.o) T -

'a (a- aPb lbI TbIPa Ca a) + a~Pb CbI (T 7(T (97)

Heat flow in the second thick layer .s determined from those equa-
tions presented in Section II for a nonrecession case.

e. Special Thick-Thin-Thick with 6a:5 Ta (Figure 21).

10 Material
Material B Material
A C

Tm T Tm T 3

.0 a -. T

Figure 21.
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S(I) 0 a T " The energy balance is

+ q 0 d,, qcond + cond -qstored ,t

I--z 3--2 z (98)

or
ka T-

TM- (T +") c (T3 T;-) [Pa Ca' Pb Cb Trb

+ P c (T - T2) (99)
CcAt

Solving for TZ,

I, ., at T; k, At Y

/ . -

T,, , ' r; T ] a . P ( b - I, P Cc. a
T, " - t a T"? T .,

Pa ) PC

(100)

or (c;Ta < a :< Ta . The energy balance is

qcond ! qcond "-qstored

z 3 --- (101)

orka At-

T- -stT kc At -- 'r * a

. , . o} , , ' T , C ,, - ,) , T 2 , C a b a) - -S l i g or T ' Ik ,, 
kc W a. .

(103)
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Heat flow in the second thicK layer is determined from those equa-
tions presented in Section II for a nonrecession case.

2. Cylinder Ablation -Conduction

The energy balance for the radial heat flow toward the center-
line in a cylinder is basically the same as the flat--!9te_ caae, with the
exception that average areas or changing areas are cjn.:-'e red for
conduction and storage. Once the ablation front rechdis an interior
nodal point, the ablation distance "a" is tpftcod 'by Obc va)aP of
Ta (0 S a :5 Ta), and the finite -difference calculaiticn jprocr ss startcs
over again. In addition, the radius to the original T~ .- i2ri is
reduced by the value Ta.

a. Gene ral Thick with 6a,.> Ta (Figure 22)

R

T2~

TTa

(1) 0 5 as .a The energy balance for TZ is

qcnd A + qcn A qstored A2
1 -2 1-2 3 -2 3-2 2 (104)

t2



or

ka
( a a) Tin= ) A + (T; T) A

-T a 1-2 Ta 3- 2

Az(T - T()
Pa Ca Ta A2  (105)

Ta a)

where A =OL (R +

A = OL (R TZ 2ja)3-2 
2

Az =0L(R- Tz)

Letting
ka  t

Pa " PaCa a2  , Z = R -"

and solving for I

(Z) 
(Z ?) T1 

'a 
+a Ta-")

+ Z -Z Z

Ta/, pIaZ+ " + a j )( Ta + T (106)

TZT

T z + a  a TZ

P a + a - a Za a
a z+ ) :Ta Ta (1 )

T
a

(2) -- < a _S Ta. The energy balance for Tz is

A. +qcn A q A2
qcond 1=+ qcond 3- qstored1 - .Z 3 -- 2 2 1 7

~vjt



or
i I a  T' )- A +- (T,' T AT a) (T I-+ Ta 3-2

-Pa Ca \T - a)A' (108)

where

A( 
a)Az = L (R J T,

Letting

kaAt' -. Z - R -E TZ
Pa ca Ta?

and solving for T',

Ta f a z a). (Ta)(aa) a
TM ~ 4 Pa 11 2++T . (L/Z "-" "

a  - a)\ + 2

4 -(109)

As long as the remaining wall thickness of the material undergoing
recession is equal to one or more thar )ne T, the interior and interface
equations presented in Section II are used to ;olve thc heat balances
throughout the structure away from the receding surfa,

b. Special Thick with 6 a < Ta (Receding 'burfa e Ta from
Backside) (Fiiure 2 3)

Ta
11) 0-S a_ s- The energy balance for T? is

qcond A - qnet Ai qstor-d A2
- 1-2 (110)

. $44



T2

1R

I I

I q--T o -I

Figure 23.

or
ka

T aa aTm - A - qneti Ai

Ta (Tz - T)
Pa ca (111)

where

1-A2 OL ('R~~Z a

A =L (R TZ)

A2e(RET2 + )

l-5



Letting

k AtPa Z R
Pa Ca a

and solving for T,

(' a)a 2 qnct Z ( Tar. (T aat

T M p 2 4- T, = 

/. + T -a

! z++ ) a
Ta

(2) - < a < Ta. The energy balance for Tz is

A - qneti A i  q stored Az
qcon l-z(113)

or
k

T-a)T - T) 1 A- qneti Ai

Pa ca (a a) (T2AT2) A, (114)

where

A OL (R a+ a

1-2 ( a a

Ai = OL (R - T

Az= OL R z+

Letting
kaAt

a PaCa Ta Z R TZ

and solving for T2 ,

46



qnctiAt (a a\ ) + Tz T

T Pa a Ca Ta a (115)
;T, 

za a
Pak Ta

c. Special Thick-Thin with 6 a g Ta (Figure 24)

SFigurMterial

a~ 
a

Material

)a. Thin Skin

netondA qe i A soe A

I-N

l ------ - - -116

qnet

Figure 24.

(1) 0 -g a ig 2 The energy balance for T2 is

qcond A -qeiAi qstored (3+A4
1- -2 ne 2 ( 3 A)(116)
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ka
(Ta -a) (Tn- T' A - qnet i Ai (Pa Ca- A3(Tar 1-2 3

+~ ~~( zb CbbA ''- T 2)

Pb Cb Tb A4
1  t (117)

whe reJI

0A -0L (R +Ta

; :~ 1-2Ai 0 L (R- TZ - Tb)

iA3 - 0 L J:,+-4

A4 0L( I T2 2

Letting Z -- R -F, T2 and solving for T'
I2 ,

t! ~ ~~~~~~~~~~,,,,,, k ' -, _ at,, ,, ,,(:: ) ,
717 7j! p.b (7)~ 7" ;-' , (z2)bF

1(7 I T .( ) --

Ia (l, t.)V. ~ b (118)
Ta

(2) T- < a < Ta. The energy balance for TZ is

'Icond A - qneti A s .* qstor(.r, (A3 + A 4)l --'z l-z 2()19)

(Taa a m T z qneti Ai [Pa Ca a a A3

+ Pb Cb Tb A4]( Tz) (120)

vhe re

A 0L (R - T Ta)

Ai OL (R- T2  Ta

Ta a

:.18



I

Letting Z R - and solving for TF,

d. Special Thick-Thick with 6 a _ ra (Figure 25)

Z~Materoi

B R

fJr T3

To  r b rb

Figure 25.

(1) 0 : a < Ta The energy balance for T2 is

nA c cond A qstored (A3 + A4)
Ac n q c-n q s-r e

1-2 3-21 -- 2 3-2 2 11,,

i,

I



or
or k (, k,) t , T,,

(T a - a) m T ,r A 2  --Tb T' ! A a a - A

Tb Alz T2)
+ Pb Cb' A4 At (Iz )

where

Letting Z R - -T2 and solving for T2 ,

TR _ : k 2 + T, ab - a)

-~ ~ +( ~ p , 1,1  , ~ ., (z.- )PbebJ (14
Ta

(2) L < a < "a. The energy balance for T is

A + Cicond A : q~ored (A3  A4)(15

or

TIa Tb I-

TPa Ca (Ta - a) A3 + Pb Cb- -2 -( TZ) (2

50



where

A =0L (R Z+ Ta )

A = 0L (R-TZ - 2
3-2

A3 L (R Tz4 Ta a)

A4 =0 L (R T/

Letting Z - R -E TZ and solving for TZ,
.I1•ITJZ IIII .7 ( .4 ) , z ,7 -j* -) Pa 'a (v , " ) '@ " " 'b " 71

T M ' a 41 (V " •- T; 7, at TA 
a

T 7 ) , pa ). (1 1) , Pb(z . ).(Z,L-).

'.I " , -' ." ": ' ) '  i ,( '"" ' .. ( Z. -? o , -
(127)

Heat flow in the second thick layer is determined from those
equations presented in Section II for a nonrecession case.

e. Special Thick-Thin-Thick with 5 a < Ta (Figure 26)

A R
Material

2 T h Skin
Material

aC

-it.

Sr a2r1 b~ r,

Figure Z6.
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Ta
(1) 0 <as- -. The energy balance for T2 is

qcond A + qcond A qstored (A3 + A4 + As)

1-- 3-2 2 (128)

or

(T- ) in T A + - T3- T z A
Ta a m-T1 -Z T c 3-."

IT
= A3 Pa Ca T+ A4 Pb Cb Tb

+ A 5 Pcc c ] (Tz-Atz) (129)

where

O L ( R -y ~ e T a - a )

A = OL (R TT Z + TC
3-2 2

A3= L (R -IT 2 + a

A4 = OL (R JZTZ -- 2

As = eL (R -:TZ - Tb -1)

Letting

1 Ta T CZ = R-TZ , A 3 Pa.Ca ? + A 4 Pb cb rb + A 5pc cc
OL

solving for T,

T k ~ ( ~ a 2T~ b~ ~t( + Tc)( la +Tka at (Z + kc at Z 2bT\), -- 77- +a T-- Tc A a+TZP-a2

T2ka At(-"-la a/k(LI ~+ c2 a /  '"a_ _

(130)
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(2) - a a5 Ta The energy balance for T2 is

qco 1A + qcond Az qstored (A3 + A4 + (131)-23-2 \/
1 - 3 -2 2

or

ka (m 1z)1 T
a - T A+LCT3 - T2) A 3 Pa Ca (Ta a)

T a (T' - T)
+ A4 Pb Cb Tb + A5 Pc cc (132)

where

IA2 =0 L T(R +
iZ

A2 = OL (R -E +

Tb

A=L-z VT 2

A3 =OL (-T 2 + Ta a)

A 4 = L ( -ZT )

A 5 0 L (R -: Tb 4

Letting

Z=R-"TZA = L A3Pa Ca a a + A4 Pb Cb Tb

+A PC Cc --c] ,

+ 5 P2

and solving for T Z ,
T z  a T-, a (z ) (,Ta )

T ka  a t 7 +3 k c  a t T -' 4 T2(TaTa A re A TT ,

k, I+Ta -a) kcA 2 Tb +Tc T -a
__ _ 2_ _ 2 ?~-

TaA Tc A Ta Ta
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Heat flow in the second thick layer is determined from those equa-
tions presented in Section II for a nonrecession case.

3. Sphere Ablation -Conduction

The energy balance for the radial heat flow toward the center
in a sphere is basically the same as radial heat flow in a cylinder if
the average areas are modified. Appendix A of Report No. RS-TR-
65-13 gives some of the derivations for average areas for spheres.
Once the ablation front reaches an interior nodal point, the ablation
distance "a" is reduced by the value of Ta(O _5 a < Ta), and the finite-
difference calculation process starts over again. In addition, the
radius to the original T1 nodal point is reduced by the value Ta.

a. General Thick with 6 a > Ta (Figure 27)

,l i I/ R i ! : 1 I ! - -.._

Figure 27.Ta

(1) 0 .a _ T " The energy balance for T2 is

q A +qcond A =qstored A?

cond z zA
1- 2 3 -- 2 (134)
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or

T) Tz A +-- -T'1T A

a- a- Ta 213-2

:Pa Ca Ta (Tz- Tj) A2  (1 5)At

whe re

A Rf Ta -a + T

1A2 44(R ET)? + Ta (a.a1-12

Letting

k At

Pa ac T 2 + - '-"
Pa Ca a

and solving for T21,

T,11 P. T, _____*Z1~a '

j - -- j , , (136)

Ta

(2) - < a a. The energy balance for Tz is

qcond A + qcond A = qstored Az (137)

1-2 3-2
1- 2 3- 2 2

or

ka (m T)A + ka (T3'-Tz') A(T a a) ( T 2 1 - - -
(a' - Ta/ 3-2

t APa ca ) - A (138)
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where

~T

2 1

Ta a (3T 2a)

Az  : R - az+ - / + 48

Letting

k a At
Pa =R-T

and solving for TZ,

Tin, ' T ] [ 2 " z* ) "a'a (3Ta" .) V -,-- ) , ,. ZY, --..)(,.-a,)
T{ Il2a ) a~ -2)z a~ 1HZ) 3Ta )a

(I_-_4 _ I 48

I(z " 8
(139)

As long as the remaining wall thickness of the material undergoing
recession is equal to one or more than one T, the interior and interface

equations presented in Section II are used to solve the heat balances

throughout the structure away from the receding surface.

b. Special Thick with 6 a : Ta (Receding Surface T "a from
Backside) (Figure Z8)

litt

Figure 28.
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Ta

(1) 0 - a --. The energy balance for '1' is

A q A?.qcon et A + stored A 3
- 2 (140)

or

ka( T a  a) m "T Z -A -q n e t i  A ?
(Ta a) (Tm m~A

Ta T) (141)
Pa Ca A3  At

where
22

[(R E + T a( a .
A 4 aT a) + (T_ a Aa

A = R -ETz+
1-2 2 12]

A 2 zf~r, ~' Ta) T aZA3 =[(R J 7 + 4 + 4 8

Letting.

ka At. a =  , Z=R -Y rz
Pa Ca Ta 2  Z

and solving for T

TII (T) 2T

T, 'T ( -T 14)

Ta

2) -- a r a . The energy balance for Tz is

qcond A - et A2 = sored A
4 48 (143)
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ZLi

or ka(
(Ta a) Tm- T 1-)I - qneti A2

TPa ca (a - a) (2 t A3  (144)

where

a-2 -, [( + T a (T a) 21

1A2  p[(R -2 a)~A -a- (T -a a

A3 =[(R -2+ 2  + 1

Letting

k a At

Pa Pa Ca TaZ '

and solving for Tz,
qneti tit 7-2 a  a aT z

TPa - ( ' a) + T 2 -ja

[(7 Z Ca (T a

Taa (ia J2 C aT (145)

Pa Ta T-
Ta /

c. Special Thick-Thin with 6a S Ta (Figure 29)

''I
: fII I ii-I'

Illl

k~ lLi/I -------------

Figure 20.
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Ta
(1) 0 _ a --. The energy balance for Tz is

qcond A - q Ai qstored (A2 + A3 )

or
ka T') Ta I

(Ta- a) (mT z A- Pneta Ai 1A2 PaCa 2

+ A3 Pbcb Tb] (T?- T) (147)

where
2 2

A [R - T + a -a_ )2 4-(Ta - a) 2

1-2 TaAi d? - T 2 - Tb)2J

A,. [= J: 2 + _ -

A = [ T2 + - ) + Ta]

Letting

kaAt Z
a Pa Ca Ta '

and solving for T,
ka~ t [(Z aa (Ta  - a) ,J( .- z  a "a

Tm T -- "2"-- 12 qnci -b)z tfr'
T : - , - ' -  Paca"7" Z- " lZ: bIa

T: + 4 P Ca 121 b TbI (1 8
ka~t riz Ta -") a - -)

T -a iiza j
a Ta jT 2 T. 12', b/a ) Z- 4' " Pa ca- *1Z)+ 'IPb cb rb

Ta
(2) 2 <a Ta. The energy balance for T. is

qcond A2 - q Ai (Ai stored 2 + A3 ) (149)
152 2
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or

(Ta a Tr- T A - qetA i =[A 2 Pa (a a a)
Ta a (2L CaT

+ A3 p b b T 1 (Tr A t (150)

whe re

ET (r a)Z]

R,= a , + (+a
A - T2 T

A2 Pb [(R aa a) + a

Ab '2 + _ _ __ _

II ZJ1 1

Letting

CaT

and solving for Ti

T: (151)
k. t , - ibbb

d. Special Thick-Thick with 6a :5 Ta (Figure 30),

T a

(1) 0 s2 The energy balance fur T2 is

qodA + qcn 3- qstorQej (A 3 + A 4 )

.r(.q ).", 7 tz '- - '.-n-, (152),(z ,J'", - .-
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Materia-

q /t x- T

2a Tb

a I I T4

Figure 30.

or

w~ier? a)(mit)A hTb) ' A3 (153)

A

3 2 [(R TZ -~ + TI

+ Ta~z+ I61



Letting Z R - rT and solving for T?,

T , ,. ' Ts k b . b , Ia

T; "& a "a (154)

ka A t "a ' a -a) kb A' (T- a ')l

,___ - a-at a-4-I PaC, + - j - -TI b b 115

Ta

(2) < a _ Ta. The energy balance for TZ is

cond A + cond qstored (A3 + A4)
- 2 +c 3-2z (155)

or

(Ta a) (TI  T() 
[-( a)--(T . T2 Tb ( )(,b A.] (T--  T') (1561

+b Cb "at

where

T a + a - a)

A4

; z Z12

:3- 2 2 12 -a)'
SA3 [=R+I Tf.. T + + T! ) 2

A4 [( -j: 2 4 + T8b

Letting Z = R - TZ, and solving for T2 ,
A

a. " [(Z T;-. It',+ ,. -. [I .,1b)' .,+,* ,,,k, --. t ", -') ' ( ' +;*IbT ,' -a /,: "b. Iba

S( ) it. "b. )" b 1z
1- 'It( - a Ca) ( I) I 1(. .. 4).8

T, k, (I. ) '(k a) '(1 (157)

, ' O -. 4)z 481 JPbCb I

Heat flow in the second thick layer is determined from those equa-
tions presented in Section II for a nonrecession case.
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e. Special Thick- Thin- Thick with 6 a:5 Ta (Figure 31)

aMtrial~

MaterialB

II

TO A rb 'O'r -%I .-

Figure 3 1.

(1) 0<! a:S - The energy balance for T 2 is

q A+q A =q~ (A + A + AS) (158)cod1-2 cod3-2 soe A

or
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whe re 2 1
212

3 A 4 (R JT,- T, 2)+ 12

Letting Z = R -- T2  and solving for T,

A3 (T a a
4  (zT9 b

" \b b' 2 T 2
Aa- (T a a It - " ' ''A5__ _ [(,,-\a -- - (160)

()t- < a T The energr balance for T is

1 T2 + o 3 = qstored (A3 + A4 + A5 )

1-2 - 2 1

1-2z 3 4 z (161)

or" k a  kT p' T':A IT c a(Ta- a)Tn- Tz)Az i*r A3 T 3A 4 a aa

1- 24P Cb Tb2 5 P cS T- (162)

where...... -_ T- -<- + - c (. - T A"3O a a a

642 64T



111 -TIN

A4 = (R ZTz - 2 + 12 i

As = [( T?_ - T " -.

Letting Z R T and

A TPaca Ta-a +PbCbTb+TPccc

and solving for T'

ka t [ T aa) kc ,4t Ta [ T
ca

? a-a + Ta - -b-T• .
a z+1--2) 2 1 cici2a 1

A (163)

Heat flow in the second thick layer is determined from those
equations presented in Section II for a nonrecession case.
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Section IV. HEAT CONDUCTION AFTER ABLATION TERMINATES (T and T,)

With the equations derived for heat conduction prior to ablation
and during ablation, the heat conduction equations after ablation stops
must be considered. The equations for conduction prior to ablation
cannot be used after ablation ceases without some modification to the
temperature grid because there is no assurance that the ablation into
a new T will be zero, i. e. , the ablation usually will not cease with the
receded surface coinciding with an original temperature node location.
Although it is possible to select a new temperature grid system for the
material left after surface recession ceases and to obtain proper tem-
perature of new nodal points based on interpolations from the calculated
temperature gradient when ablation ceases, an approach is taken herein
whereby the original grid remains unchanged. Heat conduction equations
for T. through Tn are derived in the same manner as before and during
ablation. The equations used to calculate T1 and T' are derived in
Paragraphs 1, 2, and 3.

1. Flat Plate

a. General Thick (Figure 16, Tm Taking on the Value T)

with 6 a > Ta

(1) O_ a_= a. The energy balance for 1 is

qnet A-cond A = qstored A

I 1 (164)

For the flat plate conduction, A may be taken as unity; then,

k a r a' - TI'

q ta ) T T,) Pa a - a) Tij~ (165)qnet (T"a - a) (,A

The energy balance for TZ may be taken as

qcond A + qcond A = qstored A
1-z 3- 2 (166)

or

ka ( T'+ TT'-(T?-T 2)(17
(Ta  ( a)\T1 +z k4 (3 - =Pa caTa At (167)a' a) ta
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This equation is the same as Equation (74) while the surface is ablating,

except for Tm taking on the value T I .

Since T3 through T n , including any interfaces, can be calculated

by using ordinary forward finite-difference methods, Equations (165)

and (167) have two unknowns. Solving Equations (165) and (167) simul-

taneously and letting

k At
ra = Pa ca TaZ 

results in

Ta _

( a ) a-
Ta + + Oa + P

and

[(a )( - a [T P] aT; + Pa qret -l aa) a ) J L,2. (169)

(Ta15 ]r, (Ta
a 1 +a + 13 P Ca a P TTa 3 Ta-

Ta

(2) -- < a _ a. The energy balance for TI is

A - A q A.qnet ° A - qcond A stored A

1-- 1 (170)

For the flat-plate conduction, A may be taken as unicy; then,

qneto (Ta-a) (T- Tz = 0 . (171)

The energy balance for T'Z may be taken as

qcond A + qcond A= qstored A

I ---2 3- a (172)

or

(T a (T I' Tz)+ T a (T; - T2)(a2 a) T a
T(r a ) (T-Ta) (173)"Pa ca( 2 a At(1 3
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This equation is the same as Equation (78) while the surface is
ablating, except for Tm taking on the value TI. Solving Equations (171)
and (173) simultaneously and letting

ka At

Pa ca ra

gives

1~3T, / /3T a

T qneto ra Ta Pa +a a + TZ\ a T (14
3

Taa3T a  (174)

Ta

and

--aa
Tz  et • a+z 'r ;P (175)

3T a

2 T + Pa

It should be noted that the denominators of Equations (168)and(169)
are identical as are the denominators of Equations (174) and (175).

When "a" -Tat Equations (174) and (175) for T1 and T reduce as
expected to

t ITaT

T1' z = qnet Ta + T 3 • (176)
0oka

b. Special Thick (Receding Surface < T a from Backside,
Figure 18, Tm Taking on Value Ti) with 6 < Ta

When the receding surface is less than one incremental
r from another material surface or backside, special considerations
must be made for all material coinbinations normally experienced.

(1) 0 : a_ - . The energy balance for T1 is

qet° A - qcond A = q stored A . (177)
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For the flat-plate conduction, A may be taken as unity; then,

k a T~ Pa ca a)(T O
qneto (Ta- a) F,- T2; = Pa Ca(178 - a t ( )

The energy balance for T2 may be taken as

qcond A - qnet, A qstored A 4,

1-2 2 (179)

or

Ta aT - net i  Pa ca '2 A t (180)

(a - a) 2 nt cT t

Solving Equations (178) and (180) simultaneously and letting

k At

Pa ca TaZ

gives

TaT-a+ 2AaJ [TI1 -- -- a l (ntO At Pa T qnet1  J (81
T', a + - T a - (181)

.a) (a- T -a_
R a2  

Pa\ a /

and
T1-a a'' A) [Tqa - a)

2Pa[TiT) a)et 2t ''7t At~Pa(T + aTa) + a ]
T; P Ca + T.1 IT Pa CIT (182)

Ta

(2) < ~a5 T The energy balance for Tis :

qnet ° A-q cond A = qstored A

For the flat-plate conduction, A may be taken as unity; twn,

ka I' ' '
qnet o  (T a  a) ( T 0 (18-)
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The energy balance for T" is

qcond A - qnet i A qstored A
or i ( T(185)

or

(Ta- a ( T - qneti Pa Ca a t - (186)

Solving Equations (184) and (186) simultaneously and letting

ka At
Pa Ca Taz

results in

T T Ta [ Ta /Ta-a(Ta(a) [qneto Pa + T a2

qnet i At 1 a~aqj (187)i'

Pa ca TaJ

and
ri

Tz + TA qneto a a) (188)
Ta a) [ a Pa Ca Ta ]188

c. Special Thick-Thin (Figure 19, Tm Taking on Value T)
with 6 a < Ta

T a

() 0 :: a.s ; The energy balance for T" is (8)

qne to A qond A stored Al
2- (189)

For the flat-plate conduction, A may be taken as unity; then,'i

qneto (, o(T T.) "° (T
(T - Pa ca "2 a) .... T, (190)
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The energy balance for T, may be taken as

qcond A - qnet i A = qstored A
1 -- z(19 1)

or
ka. T a

(Ta- a) (TI - T,) - qneti Pa Ca -2-

+P~~)(T - T 2 ) (192)+ Pb Cb Tb 2At

Solving Equations (190) and (192) simultaneously and letting

ka At t
Pa Pa Ca TaZ

S/Tagives - _ At

At I T, + t Pa_______

Tapa CaT Pb bTb aPa ca PbCbTb

T14Pa4a PbcbIb (193) I"

and
[t a )*Jj -I a t) a J • - a I "a "--

k, a) __z qr At( A,

Ta  Tj a
aa Ca(a 4a PbPbb (194) a a

(2) -T <a Ta. The energy balance for T, is

qneto A - qcond A = qstored A (
1-- 2 1 (195)

For the flat-plate conduction, A may be taken as unity; then,

kI
q - a (T, - T) = 0 (196)

(eo Ta - a)
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The energy balance for T" is

qcond A - qneti A qstored A

1- 2 z (197)

or

(Ta -a (TI' - T,) - neti a Ta a a)a - a)(
+ Pb CbT b (~T ) (198)

Solving Equations (196) and (198) simultaneously gives

,t[ 1 p At Ta- a

T= Tz+ qneto Pa Ca (Ta - a) + Pb cb Tb +  ka j

qneti At

IPa ca (Ta- a) + Pb Cb TbI (199)

and
.01

At qneto- qneti 0
TZ= T + Pa Ca(Ta- a) + PbcbTb (200)

d. Special Thick-Thick (Figurr. 20, Tm Taking on Value TI)
with 6 a:5 Ta

0 Ta
(1) 05 as -i-. The energy balance for TI is

q A - q A =qstored A

- (201)

or

ka (TI - T) AT _tT )

II



The energy balance for T, may be taken as

qcond A + qcond A =qstored A
z2 3- 2 2 (203)

orK
(T) (-v T,) + kb (T3 T)

-(Pa -aT + Pb cbT 2 T~ At (204)

T; through Tn can be calculated using the standard forward finite-
difference equations given in Section III on heat conduction prior to
ablation. P

Solving Equations (202) and (204) simultaneously and letting

ka, At
Oa= Pa ca Ta 2

results in

[a[.( T P a Ta Tb P C. a.4P bT

Ta pa ca a +Pb Cb b . a( a ( a ___________

/ a ~~ t .~bT, I a

TbT PaC I+ bC (I. C. i aVb T b)(2 5

s nto At (207)t
2ka a a) T

(Pa a. T 0] T' T 7P
lb -1 T) [T P4Ca T. T



Then

kneto a (T T 0 (208)

The energy balance for T_ is

qcond A + qcond A qstored A

1- 2 3-z 2 (209)

or

ka kb- T
(Ta-a) (T T-zT"+ kbT (T3 -T?') Pa ca (aa)

+ Pb cb T] (T?-T z) (210)2 At

Solving Equations (208) and (Zl0) simultaneously gives
F a At ,kb At Ta-a)

q / T a + Pa b +k b At

I~c(a) Pa~ Cb (_a +P 1  Pa a Ta - a +b Pb b 7

kb At

Tb C ~acaT

Sandb (,a-a+ c(1)

qneto at kb &t

PaCa a" + Pb cb' _7 b Ip a C a  Ta- a)+ Pbcb -
kb'2 12t (212)

i+ I kb a bTb IPa Ca (Ta - a) Pb Cb -2

e. Special Thick-Thin-Thick (Figure 21, Tm Taking on
Value TI) with 6a < Ta

finite- difference equation.

(1) 0 < a< -. The energy balance for Tj is

q A - qcond A qstored A (213)

1-2 1
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I f
or

e Tak a) (TV T): (- t
., Pa ca a T(14)

The energy balance for Tz is

qcond A + qcond A = qstored A

1- 2 3- 2 2 (215)

or

T~T

ka _ T kc F' ) [ a 
'

(T a _ -) - I- T , T- = 1 P a -a 2 (2 1 6

+Pb Cb Tb + 0c -~ &- (216

Solving Equations (214) and (216) simultaneously and letting

T a  T cB Pa CaT + Pb Cb Tb + Pc Cc-2

and

ka At
PaPa Ca Ta

gives

k_ __ _ At/ ) At(.--1,Ta - Ta + TC I kca A (nt 9 A

B + 
0

a Tz+T Jj~'~Pa Ca a TCB--

- kaAt kcAt pa"--. kc At " a - a +r'- a"

-[ and( 
l7

I

I-kr -a (
rTa a I. + T a ,

andT T a/ a - a ;a I] . c t (217)C

[a k+ c A + .- \ L a + __ ___ ___ ___

T---- q. t T BI ,

(2 18)
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Ta

(2 2 -a . The energy balance for T 1 is

qnet A -qcond A= qstored A

1--z 1 (219)

or

qnet o  - a) -T z) 0 (220)

The energy balance for T' is

qcond A + qcond A qstored A
1--? 3 2 2 (221)

or

(Ta a) (T - T +c (T Z-T) [Pa Ca ('Ta- a) + PbCb b

+ Pc C ) (222)

Solving Equations (220) and (222) simultaneously and letting

I'C
B = Pa ca Ta- a) + Pb cbb + PC Cc-

results in

[._. __aka At kcAt IVa- a ]

I a) a - kc At
T ---- ~a (2 2 3 )

k c At
1+ B

and

qneto At kc At

T, + T? + T3 -cB(24
, = B Tc B (224)-

kC At

76c+1+-
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2. Cylinder

a. General Thick (Figure 22, Tm Taking on Value TI) with
0a> T a

T, through T n , including all interfaces, are calculated
from the general heat conduction equations for cylinders. i

Ta :

(1) 0 _< a< --. The energy balance for T1 is

qneto A1 - qcond Az qstored A 3  (225) [1-- z z(225)

or

ka
qnetoAl (Ta- a) (T;- T ) A2

T )(T I -Ti)
= A3 Pa Ca( -- a) At (226)

where

l L(R -a)

A2  0 eL(R -T )C

A 3 =OL 2 + 2 a e s

The energy balance for Tz is the same as Equation (105) if T m is
replaced by Ti.

Solving Equation (226) and modified Equation (105) simultaneously
and letting

ka AtPa Ta2

Pa Ca Taz

and Z = R -T 2 gives
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I~a~) ~~L 1 IA---1+ / 4 T; 4a
a Ila" "a, 1.: Pa Ca Ta PT t ",( a \ I.

ra z~a + Pa + [ a + (P27
(T Ta(227)

and

! a B(zT T 111 " [( 2T a qA
, Ta1j7[z+JaZjPan/I T PaCa Ta \1 4j

whe re

Ta - a

2

Ta
B 3  Z - -

3 Ta
- a

B4=Z+2

B 5 =R-a •

(2) T < a _s Ta. The energy balance Lor T1 is

A - qPond A2 =qstored A3  (229)

1 -'2 I -

qneto A1 + (,- a) ;T - T11  A2 = 0 (230)

whe re

A1 = OL (R - a)

A =L r + )
78
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The energy balance for T? is the same as Equa -&1.08) if Tm is
replaced" by T1.

Solving Equation (230) and modified Equation (108) simultaneously
and letting

ka At
Pa--

P a Ca Ta

and Z = R - T 2 results in

T) -
a  

a% I
* "T; t Bi"k 1( (131 \84 Ila ~ Tf /Z fi4  T3 la (BI.

Ta Ila--B,

and

33T a

(Ta + a Pa 1(5'T Ta 'B 3

"net 0 B 4 )(a)Pa + T2  Ta + T3 - -a\)

T, (232)
3 T a

Ta a =

whe re

Ta

2

B4 = Z + 2
2

B5 =R- a
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b. Special Thick (Exposed Surface 5 T from Backside)

(Figure 23, Tm Taking on Value T) with 6a . Ta

Ta

(1) 0 < a: 5 The energy balance for T 1 is the same

as Equation (226).

The energy balance for T. is the same as Equation (111) if T m is
replaced by TI.

Solving Equation (226) and modified Equation (11) simultaneously
and letting

ka t
a -

Pa Ca Ta

and Z = R -]Tz gives

T a a ( _B + q n e t i t / 1 3 A
P. ela a B/ eft \. 6/,

, ) / ((233)
and

(B " "T; a At /10

T ZB4 T C2 qn ti At, % et At 11a )z Pa Ca ra \ft"J nj Pa Ca Ta

T(;a a)(7.7)

7 -a ra. ~ ~a \ V-" (234)

whe re =

T a  a
B1 -Z+ 2

B2 Z
3 Ta

a
B4 - Z -

B5  R - a

116  Z 4-T

8



S Ta

(2) - < a 5 Ta. The energy balance for T1 is the same

as Equation (230).

The energy balance for Tz is the same as Equation (114) if T. is
replaced by TI.

Solving Equation (230) and modified Equation (114) simultaneously
and letting

P a a= T
-a Pa Ca Ta2

and Z R - T z results in

Ta [ a) Ta B\ (a a ,
TI=T2+ Ta - a) neto a Ta/

qneti At B2  (235)
Pa ca T a ,

and

Ta P a \ B5
T,= T, + (Ta a) [neto Pa

- qneti B

Pa ca Ta BI(

whe re

Ta - a
BI-- Z + 2

Bz = Z _ _

B5 =R-a

c. Special Thick-Thin (Figure 24, Tm Taking on Value T)
with 6 a -- Ta

(1) 0 5 as -. The energy balance for TI is the same as

2

Equation (226).
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The energy balance for TZ is the same as Equation (117) if Tm is
replaced by TI.

Solving Equation (226) and modified Equation (117) simultaneously
and letting

ka At
Pa =

Pa Ca a

and Z = R -ET 2 gives

Sa k 3 At B lcTiata 16) At

T. Ta P -,, Ca,. 84 Tj j ""°" 1 .I

TaZ *aBJ 1JL (237)

and

Tt~~~~~~~11 At 1z"qt
I A '

T[ (238)

whe re

B +T) Pa ca + (Z -) Pb Cb Tb

Ta - a
B1 = Z-

3 Ta

2B4 = Z+ - 2

B5 -R - a

B 7 Z - Tb

(2) - - <a <Ta. The energy balance for T, is the same

as Equation (230).

The energy balance for T is the same as Equation (120) if T m is
replaced by Tj.
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Solving Equation (230) and modified Equation (120) simultaneously

and letting Z = R TZ results in

T T2 + qne- qnet At (239)qto kt() a BB

and

At [qneto (BO)- qneti (BO)J (240)Tz = Tz + B(20

where

Ta) paC( a a)( -b) Ob Cb Trb
B (7- 4 I :iL) Pa ca(T aa) +(Z-Tob2~

T a - a

B5R- a 

B7  Z - Tb

d. Special Thick-Thick (Figure 25, Tm Taking on Value T1,)
With 6a-5 Ta

T through Tn are calculated from the general heat conduc-
tion equations for cylinders.

T a

(1) 0 :5 a : 2. The energy balance for Tj is the same

as Equation (226).

The energy balance for Tz is the same as Equation (123) if Trn is
replaced by TI.

Solving Equation (226) and modified Equation (123) simultaneously

and letting Z R -E T2 results in

t" k A (14)(BO' IL, T, ' '4 )

(241)



and

[k,~t(I11 )J, At kb 4).1 1
'a/P Ca 'a ' "\ I T \ .lJ -
\ I Cb T. 'f 'b .,

a (I 1 b

(242)

where

(() a Z T) b b

+ Pa caT +  T Pb Cb'T

Ta - a

BI:Z+ 2

3 Ta

2

B5  R - a

Tb
B8  Z -

T a

(2) < a Ta. The energy balance for T, is the same

as Equation (230).

The energy balance for T' is the same as Equation (126) if Tm is
replaced by T1.

Solving Equation (230) and modified Equation (126) simultaneously
and letting Z - R -ET 2 gives

[:A( " " , .'k €, , (11 Lb . k , W fBO
kllet1 111 b a l',a, k \, . \l' ,. ,

'a B) j (S) (243)
k, Nt Il.)

and

(B_) ,kb At (B8 )
S to At B + T 2 + T Tb (B)(

T2 (244)
kb At (B)

Tb (B)
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\vhe re

( T a a /\ / Tb\ Tb
B Z + Pa Caa a+ ca- 7 j Pb Cb 

B1  Z + Ta - a

2

Bs R - a

Tb
B8 2 z "- "

e. Special Thick-Thin-Thick (Figure 26, Tm Taking on
Value T) with 6a _5 Tp

T3 through T n are first calculated using the forward
finite-difference equations for cylinders.

Ta
(1) 0 5 a . The energy balance for Ti is the same

as Equation (226).

The energy balance for T' is the same as Equation (129) if Tm is
replaced by Tj.

Solving Equation (226) and modified Equation (129) simultaneously
and letting

ka At

Pa ca Ta 2

and Z = R -E T 2 results in

(B.)!31 - ' - , --

RA(t) kA I'-a [ ,. /I k, A, '~ ~

,III - - .i -]

9. t" I ; ,
and. ". '., ' I [ ., "_ (246)

_______ ~ -- ("46)

8:;



where

4B = ra -a- 2 - Pb Cb "rb + Z b  P C ccT

Ta- a
2

3 Ta
-a

2B4 =Z + 2 2

B5 R - a

B9 = Z -Tb --

Ta
(2) < < a :s 'Ta . The energy balance for Ti is the same

as Equation (230).

The energy balance for T' is the same as Equation (132) if Tm is
replaced by T1.

Solving Equation (230) and modified Equation (132) simultaneously
and letting Z = R -FT 2 gives

B,. TC T1

+ c  At IT - a ,k 6 / qqnet o  + _9 4 Tz + T-

Ta T(247)

kc '!It /B 9

1 + T c LB

whe re

Ba (z a~) Pa ca(Ta )(z Tb) Pb cb Tb1 Z+ 2- aa C Ta) + z - 2p C~

+ (Z - Tb -  PC Cc-T
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Ta - a

2

B5 = R - a

Tc
B9 Z b  2

3. Sphere

a. General Thick (Figure 27, Tm Taking on Value TI) with

5a > T a

T3 through T n , including any interfaces, are calculated
from the general heat conduction equations for spheres.

Ta

(1) 0s a's T. The energy balance for Tj is

qneto Al - qcond A2  qstored A3
1- 2 1 (249)

or

qneto A1  (T - T ) Az

A3 Pa ca - i T1  (250) 

where

Al = [{R - a)']

A ? = (+ a (T a)2

3a~z a 2
. 2 -- - a) (T - a)

The energy balance for T2 is the same as Equation (135) if Tm is
replaced by TI.
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Solving Equation (250) and modified Equation (135) simultaneously
and letting Z - R -. Tz results in Equations (227) ana (228) where the
following parameters take on the new values of

Ta -2(a - a) zBI 12 (251)

*Ta
2

B 2 TZ + - (252)
Bza~ = Ta2i-

B3 z -) + 2  (253)

B 4  Z + 2 ) ( 2 (254)

B,=(R- a)' (255)

Ta i
(2) - < a Ta. The energy balance for T is

qnet A 1 - qcond A? -qstored A3
1-- 1 (256)

or

qneto A, + (Ta) - T ) A? 0 (257)

where

A, = (R - a)z

A 2  ( T a a) (T a a) ]

Az [( R "r+ + 12

The energy balance for Tz is the same as Equation (138) if Tm is
replaced by T1.

Solving Equation (257) and modified Equation (138) simultaneously
and letting Z = R - TZ gives Equations (231) and (232) where the
following parameters take on the new values of
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+T- a T a
B1 = +a -+(258)

B4 \ 2 + 12{20

II

B33 = [(ZTa f )+ TaJ (259)

B4 = Z __ (+ 2a2 ] 20

B5 =(R -a) . (261)

b. Special Thick (Exposed Surface _< Ta from Backside)
(Figure 28, Tm Taking on Value Ti) with 6 a. Ta

Ta'
(1) 0 -- as - The energy balance for T is the same

as Equation (250).

The energy balance for T? is the same as Equation (141) if Tm is
replaced by Tj.

Solving Equation (250) and modified Equation (141) simultaneously
and letting

ka At

Pa = Pa ca Ta 2

and Z = R - FTz results in Equations (233) and (234) where the following

parameters take on the new values of

Bi F Z 4  )- + (262)

Taz

B 2 = Z + 12 (263)

B4 = [(z+:2; a)+( ) (264)
2 41

B5 = (R - a)2  (265)

B6 4. 4 + 48 (266)

,1._



T

Ta

(2) -- < a 5 T a. The energy balance for T is the same

as Equation (257).

The energy balance for Tz is the same as Equation (144) if Tm is
replaced by T1.

Solving Equation (257) and modified Equation (144) simultaneously
and letting

ka At
a - 2
Pa Ca c a

and Z = R - TZ results in Equations (235) and (236) where the following
parameters take on the new values of

BI = Z + Ta2 a)2 + Ta 12a)2j (267)

B2 = Z (268)

B5 = (R - a) 2 . (269)

c. Special Thick-Thin (Figure 29, Tm Taking on Value Tj)

with 6a -< Ta

Ta

(1) 0< a< -- The energy balance for T1 is the same

as Equation (250).

The energy balance for TZ is the same as Equation (147) if Tm is
replaced by Tj.

Solving Equation (250) and modified Equation (147) simultaneously

and letting Z = R - T2 gives Equations (237) and (238) where the
following parameters take on the new values of

r 1  2 2 TTab
B (Z+ )+i-'PaCa- + -

1  b]-8

Tb2
+"b2 Pb Cb T (270)
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2

BIZ + T a -a) (T a - a) (271)B, Z 2 12

3T a  Ta
-2 a +" '- - a)<v

Z + a) (272)

B5 = (R - a)2  (273)

B 7 = (Z - Tb). (274)
Ta

(Z) -- < a :_ Ta. The energy balance for Ti is the same

as Equation (257).

The energy balance for T2 is the same as Equation (150) if Tm is
replaced by T1.

Solving Equation (257) and modified Equation (150) simultaneously
and letting Z = R -4, T gives Equations (239) and (240) where the following
parameters take on the new values of

B =[(Z+ Ta 2  + 12 P ca (Ta a- )

+ [(Z - +-i2 Pb cb Tb (275)

2 _12 Pbc
Ta - a) T a - az

B, = + 2 12 (276)

B5 = (R - a) 2  (277)

B7 = (Z - Tb)' (278)

d. Special Thick-Thick (Figure 30, Tm Taking on Value T)
with 6a -< Ta

T3 through TX are calculated from the general heat conduc-
tion equations for spheres.

Ta
(1) 0 5 a5 T The energy balance for Ti is the same as

Equation (250).
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The energy balance for Tz is the same as Equation (153) if Tm is
replaced by T.

Solving Equation (250) and modified Equation (153) simultaneously
and letting

Pa=k a At

Pa Ca TaZ

and Z = R -ETz results in Equations (241) and (242) where the following
parameters take on the new values of

B A Tzi) 2 a a Ta.[(Z + + 481 a a2

Tb IT Tb(291(Z - + T8 Pb CbT (279)

B1 -(Z + a 2  + (a12a (280)

-2 - a ) -a )

B4 Z + 2  + 12 (281)

B5 (R -a) (282)

B8  Z [( +)+- Tb (283)

.'a

(2) - a :5 Ta. The energy balance for TI is the same

as Equation (257).

The energy balance for T2 is the same as Equation (156) if Tm is
replaced by TI.

Solving Equation (257) and modified Equation (156) simultaneously
and letting Z - R -Er T gives Equations (243) and (244) where the following
parameters take on the new values of

B [ Ta ( 2' Pa Ca (a- a)

b - 4 -b8 b (284)
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Ta - + Taa (285)B, = Z 2 +'125) 2 12
B = (R -a)' (286) .7

B8 = 2 1 -(287)

C. Special Thick-Thin-Thick (Figure 31, Tm Taking on
Value Ti) with ba -5 Ta

T3 through T n are first calculated using the forward
finite-difference equations for spheres.

Ta
(1) 0 5 a_--- . The energy balance for Ti is the same

as Equation (250).

The energy balance for Tz is the same as Equation (159) if Tm is
replaced by T1.

Solving Equation (250) and modified Equation (159) simultaneously
and letting

ka At
B a=Pa Ca TaZ

and Z = R -4 T2 results in Equations (245) and (246) where the following

parameters take on the new values of

B = Z +) +,-j Pa ca + [(Z- b) 2 + "z-2Pb Cb Tb

+ Z Tb -C)Z +- CZJ T (288)

B1 = (Z + a 2  ) + (a 12  21 (289)

B4 +2 a) -a)
+ 2 + 12 (290)
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B5 = (R - a)2  (291)

B9 
=  - T b - T +7-2 (292)

T
a I.

(2) 2 -e a Ta. The energy balance for T, is the same

as Equation (257).

The energy balance for Tz is the same as Equation (162) if Tm is
replaced by Ti.

Solving Equation (257) and modified Equation (162) simultaneously
and letting Z = R -1TZ results in Equations (247) and (248) where the
following parameters take on the new values of

B = [+ Ta 2 a) + (12 Pa ca(Ta -a)

2 + -'I Pb cb Tb + [(Z b" )

TC4 ] TC 
(293)+ T8 'c -c 2 z3

B =[ + Ta + (Ta 12 a)2 (294)

B 5 = (R - a)' (295)

B9  - Tb - T - f - (296)
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Section V. CRITERIA TO STOP ABLATION OR SURFACE RECESSION

Once a material surface has reached the critical temperature for
ablating, melting, or subliming, and the surface starts to recede, the
criteria for stopping the ablation (recession) must be established.
Under normal conditions the heating rate to the ablating surface is
decreasing with time when the ablation stops. With this in mind, it
was decided to examine the Tj equations applicable to post-ablation
heat flow to see if a criterion could be established. Since qneto is the
only driving parameter found in the Tj equations in Section IV, there
are critical values of qneto bel .v which the exposed surface tempera-
ture cannot be maintained at the ablating temperature. That is, more
heat is being conducted internally from the heated surface than is
available at the heated surface. The following list shows how to find
the net heating rate at which ablation ceases for all structural arrange-
ments considered in this report. In each equation listed, T, is set
equal to T. before solving for the critical value of qnet o .

1. Flat Plate

a. General Thick

Ta
(I) O_<a<--.

Equation (168) solved for qneto" (297)

Ta
(2) -- < a5Ta.

Equation (174) solved for qaeto" (298)

b. Special Thick

Ta
(1) o a<

Equation (181) solved for qnet ° . (299)

Ta
(2) -T < a < Taa -

Equation (187) solved for qnet o .  (300)
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C. Special Thick-Thin

(1) 0 Ta(lu<a< T2

Equation (193) solved for qneto" (301)

Ta(2) - <a 5 a
2 a. a

Equation (199) solved for qnet o .  (302)

d. Special Thick-Thick

Ta(1) 0_.5 a -

Equation (205) solved for qnct o . (303)

Ta
(2) -T < a < Ta -

Equation (2 11) solved for qnet o .  (304)

C. Special Thick-Thin-Thick

(1) 0_ a< T

Equation (217) solved for qnet o .  (305)

T
a

(2) -f < a Ta.

Equation (223) solved for qnet o .  (306)

2. Cylinder

a. General Thick

T a(1) 0_<a<- .

Equation (227) solved for qneto. (307)
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A

Ta

(2) < a <Ta.

Equation (231) solved for qIlet, " (308)

b. Special Thick

Ta
(1) 0 a< --

Equation (233) solved for qnt o .  (309)

Ta
(2) - < a < Ta.

Equation (235) solved for qnet o .  (310)

c. Special Thick-Thin

Ta

(1) 0 _< a< T-.

-2

Equation (237) solved for qnet o .  (311)

(2) T <a< Ta.

Equation (239) solved for qneto (312)

, d. Special Thick-Thick

T a(1) 0 < a<

Equation (241) solved for qneto" (313)

T a
( <) - < <Ta.2

Equation (243) solved for qnet o .  (314)
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e. Special Thick-Thin-Thick

Ta
(1) 0Oa< 2

Equation (245) solved for qnet o .  (315)

T a

(2) 2 <a 5 (Ta.

Equation (247) solved for qneto" (316)

3. Sphere

a. General Thick

1) 0o:5a < T- .

Solve for qneto in Equation (227) with Equations (251)

through (255) included. (317)

Ta

-- < a ! Ta.

Solve for qneto in Equation (231) with Equations (258)

through (261) included. (318)

b. Special Thick

Ta(1) 0 < a _--

Solve for qneto in Equation (233) with Equations (262)

through (266) included. (319)

Ta(2) - < a<Ta.

Solve for qnet ° in Equation (235) with Equations (267)

through (269) included. (320)
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c. Special Thick-Thin

T a

(1) 0< a _-

Solvc for q ne in Equation (237) with Equations (270)

through (274) included. (321)

Ta
(2) -- < a< Ta.

Solve for qnet o in Equation (239) with Equations (275)
through (278) included. (322)

d. Special Thick-Thick

Ta
(1) 0 a 2

Solve for qneto in Equation (241) with Equations (279)

through (283) included. (323)

Ta

< (2) a Ta-

Solve for qneto in Equation (243) with Equations (284)

through (287) included. (324)

e. Special Thick-Thin-Thick
Ta

(1) 0 a< - .

Solve for qneto in Equation (245) with Equations (288)

through (292) included. (325)T a
(2) - < a<Ta.

Solve for qneto in Equation (247) with Equations (293)

through (296) included. (326)

99



Section VI. CONCLUSIONS

Excellent agreement is obtained between data generated by the

combined forward- backward finite-difference equations and selected

exact analytical equations for a flat plate undergoing surface recession,
when proper time and distance increments are chosen in relation to

material thermal properties and surface recession rates. The com-
bined forward- backward finite-difference ablation- conduction method
is most accurate when the amount of material removed in a calculation

time increment is equal to or less than one-fourth of the selected
incremental distance between temperature nodes.

Using the methods presented in this report, simultaneous conduc-
tion and ablation calculations for transient, radial heat flow in spheres
and cylinders and one-dimensional heat flow in flat plates requires a
negligible increase in computer time over a nonreceding case with all

other parameters being identical. This is true primarily because the
majority of the equations used are identical with those used in nonreces-

sion cases.

Forward-backward finite-difference equations can be mixed to
achieve simplicity and to avoid instability in equations for heat flow

near the surface of ablating, subliming, or melting structural materials.

Centripetal ablation and heat flow equations for cylind
spheres can be modified by minor sign changes to obtain e,

ablation and heat flow equations for cylinders and spheres.
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Appendix A

DERIVATION OF CENTRIFUGAL HEAT CONDUCTION AND ABLATION
EQUATIONS AND A COMPARISON OF THESE EQUATIONS WITH

THOSE FOR CENTRIPETAL HEAT FLOW

1. Cylinder

The energy balance for the radial heat flow away from the
centerline (centrifugal) of a cylinder (Figure 22) will now be derived
for the General Thick case during ablation. For centrifugal flow, R

is the inside radius instead of the outside radius used for centripetal
flow in Sections I, III, IV, and V of this report.

Ta

a. 0< a<- -

The energy balance for T 2 is

qcond + qcondA = qstored A2  (327)

1-2 3-2 2

or

\ a ~a Tin- T) A + k (T;- T A
(Ta a) Ta 3-2

(T; -T 2) 38
= Pa Ca Ta zt(38)

where

A L [R +T 2 ] (329)
1-2 2

A 0, R z (331)

Letting

ka At
Pa Ca TaZ
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and solving for Tz

Z Ta

a T - r a rmI Ola z T, P~a Lz T8::TF Ta33(3 3)
7a ("Z a Ta a

Ta_
b. -<a< T

The energy balance for Tz is

q A + q A = q A2
cod1-2 cod3-, stored

12 3-2 (333)

or

Ta) (TM-T A -+ (T- T.) A
a 1-2 Ta 3-2

Pa Ca - A(T- T 2) A2  (334)

whe re

AT- T a - a

A2 = L 
(335)

A = L [R +T +- (336)

A2z -OL [R z Ta4 (337)

Letting

ka AtBa - a At R +E TZ
Pa Ca T aZz

and solving for T2

"f * * j

1038)
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Equations (106) and (332) are similar as arc Equations (109) and
(338). Equation (332) can be obtained from Equation (106) by substituting
a multiplication factor into Equation (106). The same is true for Equation
(109) to obtain Equation (338). The resulting substitutions and equations
are:

Z R - (XQ) Tr (339)

Ta

c. 0 < a<_-! -
-2

, ~ I ,a -,7 ,.] Q , Tz
4 ZXQ) a]_____I J

V (X ) - ( - a a - a
13 ] ' zJ a (340)

T

d. - a< a

[Z (X, ) ' - aa -'.'a 1 -\

Tm L (XQ) 7 r- I Z. aX)T -Z .
7 XQ 7 *(XQ) ( -

Z ° ( " "Q) T - X ' T a (341)

Factor XQ takes on the value of +1 for centripetal flow and -1 for
centrifugal flow. The appropriate radius is that radius to the original
Ti nodal point. Only one set of equations is compared here; however,
all of the equations for the cylindrical flow have been investigated and
can be arranged in this form.

Due to the nondimensional terms used, it is also possible to use a
-R value for R and achieve the same results. In other words, the
centripetal equations presented in the main body of this report can be
used in their present form to determine centrifugal heat flow results
simply by inserting the radius to the initial inner surface as a negative
value.

2. Sphere

The energy balance for the radial flow away from the center
in a sphere (Figure 27) will now be derived for the General Thick case
during ablation. For centrifugal flow, R is the inside radius instead
of the outside radius used for centripetal flow in Sections II, III, IV,
and V of this report.
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Taa. 0O<a< -

The energy balance for Tz is

lcond A + qlcond A 2 stored A 21-2 3-2
1 - 2 3--- 2 (42)

or

Ta - 'Ill T - T)A +-, T" - T 2j A
)1-2 Ta ) 3-2

(T2' - T 21
Pa Ca Ta At A 2  (343)

where

-2 R +ZT - a) (Ta a) 2 (3 4
A + (344)

3A 2b [( +Z + "-2 (345)
3-2

A2 z :~' 4b 2,)2--J (346)

Letting

ka At77a  " Z R+ raPa Ca Ta 2

and solving for T 2,

(347)

Ta
b. <a <'Ta

The cnergy balance for T2 i2

ond A 1  A (lstored A-
1-2. 3-2-- 2 3- 2 2 (148)
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T a) - 2 TI' ; - )3-2

Pa ca a - ;(49)

where

A 1  T a\121 0A -4 I(R .I4 T - 4 ( 50)

A j- n R Z 2+ T +-T- (351)

3- 2 2 2 2

Ta -a (3 T 2 a)'
A2 4[(R+Zr2 E T " za) J (352)44 8(5z

Letting

k a At :

a , Z R + T 2Pa ca Ta2

and solving for T'2

", (353) '"--

Equations (136) and (347) are similar and Equations (139) and (353)

are similar. If a multiplication factor is substituted into Equation (136),
one obtains Equation (47). The same is true for Equation (119) to

obtain Equation (353). The resulting substitutions and equations are:

Z R - (XQ),ETz (354)

Ta

c. 0< a<- <

T 
7- 

1 
)" , r ,,

["" "j'[:, (355)
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2Tad. j 3.< a

/ .~ ~ I.Z€' ' /* ,, '."( " 2" ' ' &- ; .. ,,, .. ,

'7 4 4 " (356)

Factor XQ takes on the value of +1 for centripetal flow and -I for
centrifugal flow. For centripetal flow the radius to the original outer
surface is used, while for centrifugal flow the radius to the original
inner surface is used. Only one set of equations is compared here;

however, all of the equations for the spherical flow can be arranged in
this form.

Due to the nondimensional terms used, it is also possible to use
a -R value for R and achieve the same results. Thus, the centripetal
equations presented in the main body of this report for spheres can be
used in their present form to calculate centrifugal heat flow effects by
inserting the radius to the initial inner surface as a negative value.
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Appendix B

COMPARISON OF THEORETICAL TEMPERATURE RESULTS USING

FINITE-DIFFERENCE TECHNIQUES FOR FLAT PLATES DURING ABLATION

The designer or analyst always encounters a basic question when
using numerical techniques; "-low well do the results from these

techniques compare with data obtained from exact solutions?" There
is only one exact solution that may be readily used to obtain data for
comparison with data generated from the forward-backward finite-
difference equations described in this report. This exact solution is
for a semi-infinite solid, ablating at a constant rate and surface tem-
perature, with the ablated material removed from the surface and bwept
downstream. This solution also assumes constant thermal properties.

The exact solution is 3

Tx- To Ax
= e cL (357)Tm~a (357

where

T = Temperature at distance x in from the exposed surface.

TM = Melting, ablating, or subliming temperature.

Ta, Temperature at x = co from the exposed surface.

a = Ablation rate.

x = Distance in from the exposed surface.

a Thermal diffusivity of the material.

The General Thick equations were used to obtain temperature data
for comparison with results from exact solutions. The input values
for the exact and finite-difference methods were the following:

ablation rates, a, = 0. 1, 0.25, 0.4, and 0.5 mm/sec.

Tm 200 0 K.

Ta, 300 ° K.

Ta = 0.001 m = 1.m0 rm.

At = 1.0 sec.

3-1. S. Carslaw and J. C. Jaeger, CONDUCTION OF HEAT IN

SOLIDS, Second Edition, New York, New York, Oxford University
Press, 1959.
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Ca 0.4 kcal/Kg -K

lKa  0. 16 kcal/m-hr-' K

Oi 0.25

Pa 1000 Kg/n
3

Q 13ka lTa 2) 9 0 I m2 /hr
f)a Ca \-t

The steady-state ternperature gradient for the finite- diffe rence
method was obtained by raising the surface temporature of a semi-
infinite slab to the ablating temperature at time zero and calculating

the su'rface recession and temperature distributions for a sufficient
time to obtain a steady, nonchanging temperature profile (with respect
to distance from the receding surface) in th(' slab. Com pa ri sons of
these steady-state temperature profiles with those obtained from exact
solutions are presented in Figures 32 through 35 for I'our different
rece ssion rates. The tenip-rature data comparisons presented in th( se
figures show that the accuracy of the finite-difference method is best
when the amount of material removed during a calculation time incre-
ment is small in relation to the selected incremental distance between
temp,,ratu re nodes. For example with the 13 and ablation rate held
constant at 0. 25 and 0. 5 mm/sec respectively, the accuracy of the
finite-difference method is improved by decreasing the Lt and T as
shown in Figure 15. This new selection of parameters reduces the
r () of i at/r thereby improving the accuracy of the numerical

app~roximations.

Based onl the temperature gradient conparisons in Figures 32
through 15, a parameter may be established as a Puide in selecting
)roper inputs wh( h will result i acceptable finite-difference accuracies.

If the finitc-difference temperatu deviations shown in Figures 32 and
i a re ac( eptable and those sh )wn in Figure 34 and solution No. I of

FiI~u re 3; ,,re not acceptable, 'or instance, an upper limit of 0. 25 for

-N I /T i.St Mhished. Mathematically this criterion i,; stated as

'
(58)

,r, ,a i the mhi\imflfl l e\i), ted r( cession rate.



Equation (358) can be written in another form by considering that
kAt k

f -- and a = P- This equation is

a 0.25 (359)
fQ

Equation (359) contains the term kr/a which is equivalent to ;Lx/a
in Equation (357). If this term is too large the relative temperature
difference between Tm and Tx = T is quite large. Based on the con-

ditions considered in the steady-state temperature comparisons of
Figures 32 through 35, an acceptable upper limit for the finite-
difference criterion T/a is unity. With ;LT/a < 1 the temperature
difference between Tm and Tz (located one T from Tm) is a maximum
initial equilibrium temperature of the slab.

Satisfying the conditions of P <_ 0. 5, t/T <_ 0. 25, and _T/a < 1
before performing a finite-difference reces sion-condition analysis
aids in insuring that the computed heat transfer in the slab will be
reasonably accurate.

I
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